Tetrahedron Letters No. 20, pp 1787 - 1790, 1978. © Pergamon Press Ltd. Printed in Great Britain.

0040-4039/78/0508-1787. **\$02.00/0.**

MECHANISM OF THE NEUTRAL HYDROLYSIS OF 1-ACYL-1,2,4-TRIAZOLES A PROTON INVENTORY STUDY

Willem Karzijn and Jan B.F.N. Engberts^{*} Department of Organic Chemistry, University of Groningen, Nijenborgh, Groningen, The Netherlands

(Received in UK 6 March 1978; accepted for publication 28 March 1978)

The pH-independent hydrolysis of acyl-activated carboxylic esters is of current interest since it constitutes a useful probe for the effect of hydrophobic hydration on hydrolysis reactions in highly aqueous media.¹ Recently we have found that the "water" reaction of 1-acyl-1,2,4-triazoles also responds to varying water ordering effects.² The purpose of the present study has been to delineate a likely mechanism for the neutral hydrolysis of these activated carboxamides.

Pseudo-first order rate constants (k_{obsd} ; independent of pH in at least the region pH 3-5), activation parameters, solvent deuterium isotope effects, and Brönsted β coefficients for the neutral hydrolysis of the triazole derivatives 1-12 are listed in Table I. The magnitudes of $k_{\rm H_20}/k_{\rm D_2D}$ as well as the large negative entropies of activation are clearly in the range expected

$$\begin{array}{c} 0 \\ R-C-N < \begin{matrix} N=C & R^{1} \\ C=N & + H_{2} 0 \end{matrix} \xrightarrow{k_{obsd}} RCO_{2}H + H-N < \begin{matrix} N=C & R^{-1} \\ C=N \\ H \end{matrix}$$

$$\begin{array}{c} 1-12; R \text{ en } R^{1}: \text{ see Table I} \end{array}$$

for water-catalyzed hydrolysis reactions³ and are reconcilable with a mechanism involving watercatalyzed nucleophilic attack of water at the amide carbonyl moiety. In this mechanism a second water molecule is acting as a general base in the carbonyl addition step. Expulsion of the triazolyl anion from a tetrahedral intermediate then leads to products,⁴ as has also been proposed⁵ for the "water" reaction of methoxyamine with 1.

Since several types of activated complexes, differing in the amount of charge separation and covalent bonding, can be imagined,⁶ the triazoles 1, 4 and 9 were submitted to proton inventory experiments in order to determine the number of protons contributing to the solvent deuterium isotope effect. Thus, the rate constants in H_2O-D_2O mixtures (k_{obsd}^n ; n = deuterium atom fraction) are related to the rate constant in H_2O (k_{obsd}^h) by equation (1),⁷ in which TS and

$$k_{obsd}^{n} = k_{obsd}^{h} \qquad \begin{array}{c} TS \\ \pi_{i} \end{array} (1 - n + n\phi_{i}^{*}) / \qquad \begin{array}{c} GS \\ \pi_{j} \end{array} (1 - n + n\phi_{j}) \tag{1}$$

GS refer to transition state and ground state, respectively, and ϕ_{i}^{*} and ϕ_{j} are the isotopic

Table I.	Pseudo-First Order Rate Constants, Activation Parameters, Solvent Deuterium Isotope
	Effects and Brönsted Coefficients for the Neutral Hydrolysis ^a of 1-Acyl-1,2,4-Triazoles
	$1-12$ at 25.00 \pm 0.05 ^o C.

	R	R ¹	k _{obsd} .10 ⁴ (s ⁻¹ ,25 ^o C)	^к н ₂ 0 ^{/к} D ₂ 0	۵H (kcal H ₂ 0	+ .mol ⁻¹) D ₂ 0	۵۹ (e H ₂ 0	;‡ .u.) D ₂ 0	β ^b
1	CH ₃	н	20.9 ^c	3.04	10.3	11.3	-36	-35	0.36 ^d
2	C ₂ H ₅	н	29.7	3.16	9.9	8.9	-37	-42	
3	$\underline{n} - C_3 H_7$	н	17.4	3.31	9.1	8.8	-41	-44	
4	$\underline{i} - C_3 H_7$	Н	33.4	3,38	8.4	8.0	-42	-45	0.36
۔ ج	p-CH30C6H4	н	3.89	2.66	12.6		-32		
ର୍	p-CH ₃ C ₆ H ₄	Н	9.50	2.71					
Ž	C ₆ H ₅	н	20.9	2.65	11.3	11.0	-33	-36	
ୡ	p-CNC ₆ H ₄	Н	207	2.46					
9	p-NO ₂ C ₆ H ₄	н	289	2.40	10.6		-30		0.34
10	CH2C1	Н	ca. 5900	ca.2.5		8.7		-32	
łł	CH3	^с б ^н 5	15.4	3.55	9.9	10.6	-38	-39	
12	CH ₃	cĩ	69.2	2.92	9.5	9.8	-36	-38	

^aRate constants (pH 3-5, HCl) were monitored at the wavelength of maximum absorption $(\lambda_m, 221-295 \text{ nm}, \text{CH}_3\text{CN})$ using a Zeiss PMQ II or Beckman model 24 spectrophotometer. Estimated accuracy of k_{obsd} : $\pm 1.5\%$; of $\Delta \text{H}^{\ddagger}$: $\pm 0.3 \text{ kcal.mol}^{-1}$; of $\Delta \text{S}^{\ddagger}$: $\pm 1 \text{ e.u.}$ ^bBrönsted β -values. ^cLit.: 17.2.10⁻⁴s⁻¹ (ref. 5) and 18.3.10⁻⁴s⁻¹ (ref. 12). ^dRef. 5.

fractionation factors of all exchangeable transition state protons i and ground state protons j. The analysis is facilitated by the fact that 1, 4, and 9 do not possess exchangeable protons. Results are presented in Table II.

In contrast to the neutral hydrolysis of bis(4-nitrophenyl)-carbonate⁸ in H₂O-D₂O, there exists no linear relationship between k_{obsd}^n and n. This provides strong evidence that more than one proton undergoes transfer in the transition state for hydrolysis. Excellent agreement between observed and calculated k_{obsd}^n values is obtained for 1 and 9 by means of equation (2) in which $\phi_B^* = (0.69)^\beta$ and ϕ_A^* is calculated from k_{H_2O}/k_{D_2O} and ϕ_B^* . The agreement is somewhat less satisfying for 4 (Table II).

$$k_{obsd}^{n} = k_{obsd}^{h} (1 - n + n\phi_{A}^{*}) (1 - n + n\phi_{B}^{*})^{2}$$
 (2)

n	k ⁿ obsd.10 ⁴ (s ⁻¹)	k ⁿ calc.10 ⁴ (s ⁻¹)	n	k ⁿ obsd.10 ⁴ (s ⁻¹)	4 k ⁿ calc.10 ⁴ (s ⁻¹)	n	k ⁿ obsd.10 ⁴ (s ⁻¹)	k_{calc}^{n} .10 ⁴ (s ⁻¹)
0.00	20.9		0.00	33.4		0.00	289	
0.35	15.4	15.2	0.20	27.0	27.8	0.25	239	240
0.50	13.3	13.1	0.40	20.7	22.7	0.50	194	195
0.70	10.0	10.4	0.60	15.7	18.0	0.51	193	194
1.00	6.88		0.70	14.2	15.8	0.75	154	155
			0.80	12.4	13.7	1.00	120	
			1.00	9.87				

Table II. Pseudo-First Order Rate Constants^a for the Neutral Hydrolysis of the Triazoles 1, 4 and 9 in H_2O-D_2O at Different Atom Fractions of Deuterium (n) at 25.00 ± 0.05^OC.

^aCalculated values by means of equation (2).

.

The necessary Brönsted β -values were provided by standard treatment of k_{obsd} values in a series of RCO₂H/RCO₂^{θ} (R = CH₃, H, CH₂Cl) buffer solutions. We conclude that three protons (H_A and two H_B protons) contribute to the solvent deuterium isotope effect.¹⁰ Therefore, a likely transition state model may be depicted as

Substituent effects in the series 5-9 support the proposed mechanism and reflect the development of negative charge on the carbonyl group in the transition state. Reaction rates can be successfully correlated by the Yukawa-Tsuno equation¹¹ (3) with r = 0.42 and $\rho = 1.48$.

$$\log k_{obsd}^{X} / k_{obsd}^{H} = \rho \left[\sigma^{+} - r \left(\sigma^{+} - \sigma \right) \right]$$
(3)

Finally, we note that the proposed mechanism is essentially different from that originally advan by Staab¹² and later adopted by Potts,¹³ involving rate determining acylium ion formation.

•.)

References and Notes

- (1) J.F.J. Engbersen and J.B.F.N. Engberts, J. Am. Chem. Soc., 97, 1563 (1975).
- (2) W. Karzijn and J.B.F.N. Engberts, submitted for publication.
- (3) S.L. Johnson, Adv. Phys. Org. Chem., 5, 237 (1967).
- (4) The relatively low pK_A (10.3) of 1,2,4-triazole possibly allows for an uncatalyzed expulsio of the triazolyl anion.
- (5) J.P. Fox and W.P. Jencks, J. Am. Chem. Soc., <u>96</u>, 1436 (1974).
- (6) Compare: J.L. Kurz and G.J. Ehrhardt, J. Am. Chem. Soc., <u>97</u>, 2259 (1975).
- (7) R.L. Schowen, Progr. Phys. Org. Chem., 9, 275 (1972).
- (8) F.M. Menger and K.S. Venkatasubban, <u>J. Org. Chem.</u>, <u>41</u>, 1869 (1976).
- (9) The isotopic fractionation factor for $>0^{-1}$ L is 0.69, see ref. 7.
- (10) A similar situation pertains to the "water" reaction of acetylimidazolium ion: J.L. Hogg,
 M.K. Phillips, and D.E. Jergens, J. Org. Chem., <u>42</u>, 2459 (1977).
- (11) O. Exner in "Advances in Linear Free Energy Relationships". N.B. Chapman and J. Shorter, Eds., Plenum Press, London, 1972, Ch. 1.
- (12) H.A. Staab, Chem. Ber., 89, 1927 (1956).
- (13) K.T. Potts, Chem. Rev., <u>61</u>, 87 (1961).